Predicting Redox Reactions

* Metals lose electrons and form ions in redox reactions.

- * The most reactive metals have the greatest tendency to lose electrons.
- Therefore the order of reactivity of metals is also the order of strength as reducing agents

The Spontaneity Rule

* A spontaneous reaction occurs only if the oxidizing agent (OA) is above the reducing agent (RA) in a table of relative strengths of oxidizing and reducing agents

Balancing Redox Reactions Using Oxidation Numbers

* Write a balanced net ionic equation to show the combustion of ammonia in oxygen to produce nitrogen dioxide and water.

* Step 1: Write an unbalanced equation

* $NH_3 + O_2 \rightarrow NO_2 + H_2O$

* Step 2: Assign Oxidation numbers to each element

$\ast \text{ NH}_3 \ast \text{O}_2 \rightarrow \text{NO}_2 \ast \text{H}_2\text{O}$

* Step 2: Assign Oxidation numbers to each element

* $NH_3 + O_2 \rightarrow NO_2 + H_2O_{-3+1} O_{+4-2} + 1-2$

* Step 3: Identify the changes in oxidation numbers as OXIDATION or REDUCTION

* OXIDATION: Nitrogen $NH_3 \rightarrow NO_2 + 7e^{-1}$

* REPUCTION: Oxygen $O_2 + 4e^- \rightarrow NO_2$

- * Step 4: Find the numerical value for the changes in oxidation number.
 - * 1 nitrogen atom: changes from -3 to +4 \rightarrow increase of 7
 - * 2 oxygen atoms: change from 0 to $-2 \rightarrow$ decrease of 2 x 2atoms = total decrease of 4

* Step 5: Balance electron loss and gain by multiplying

* nitrogen: increase of 7 oxygen: decrease of 4

* lowest common multiple = 28

Nitrogen: +7 x 4 = 28 (NH₃ \rightarrow NO₂ + 7e⁻) x 4 Oxygen: -4 x 7 = 28 (O₂ + 4e⁻ \rightarrow NO₂) x 7

Electrons will cancel out

THEREFORE: 4 NH₃ + 7 $O_2 \rightarrow NO_2$ + H₂O

* Step 6: Balance the other elements by inspection.

$4 \text{ NH}_3 + 7 \text{ O}_2 \rightarrow 4 \text{ NO}_2 + 6 \text{ H}_2\text{O}$

* Balance the following reaction using the oxidation number method.

* B_2O_3 + Mg \rightarrow MgO + Mg_3B_2

* Balance the following reaction using the oxidation number method.

* B_2O_3 + Mg \rightarrow MgO + Mg_3B_2

RED: $B_2O_3 + 12e \rightarrow Mg_3B_2$

OX: (Mg \rightarrow MgO + 2e-) x6

* Balance the following reaction using the oxidation number method.

 $RED: B_2O_3 + 12e \rightarrow Mg_3B_2$

OX: (Mg \rightarrow MgO + 2e-) x6

 $B_2O_3 + 6 Mg \rightarrow 3 MgO + Mg_3B_2$