Predicting Redox Reactions

* Metals lose electrons and form ions in redox reactions.
* The most reactive metals have the greatest tendency to lose electrons.
* Therefore the order of reactivity of metals is also the order of strength as reducing agents

The Spontaneity Rule

* A spontaneous reaction occurs only if the oxidizing agent (OA) is above the reducing agent (RA) in a table of relative strengths of oxidizing and reducing agents

Balancing Redox Reactions Using Oxidation Numbers

Example

* Write a balanced net ionic equation to show the combustion of ammonia in oxygen to produce nitrogen dioxide and water.

Solution

* Step 1: Write an unbalanced equation
- $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Solution

* Step 2: Assign Oxidation numbers to each element

$$
* \mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Solution

* Step 2: Assign Oxidation numbers to each element

$$
* \underset{-3+1}{\mathrm{NH}_{3}}+\underset{\mathrm{O}}{\mathrm{O}_{2}} \rightarrow \underset{+4-2}{\mathrm{NO}_{2}}+\mathrm{H}_{2} \mathrm{O}
$$

Solution

* Step 3: Identify the changes in oxidation numbers as OXIDATION or REDUCTION
* $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$ $-3+1 \quad 0 \quad+4-2+1-2$
* OXIDATION: Nitrogen $\mathrm{NH}_{3} \rightarrow \mathrm{NO}_{2}+7 e^{-}$
* REDUCTION: Oxygen $\mathrm{O}_{2}+4 e^{-} \rightarrow \mathrm{NO}_{2}$

Solution

* Step 4: Find the numerical value for the changes in oxidation number.
* 1 nitrogen atom: changes from -3 to +4 \rightarrow increase of 7
* 2 oxygen atoms: change from 0 to $-2 \rightarrow$ decrease of 2×2 atoms $=$ total decrease of 4

Solution

* Step 5: Balance electron loss and gain by multiplying

* nitrogen: increase of 7 oxygen: decrease of 4
* lowest common multiple $=28$

Solution

$$
\begin{gathered}
\text { Nitrogen: }+7 \times 4=28 \quad\left(\mathrm{NH}_{3} \rightarrow \mathrm{NO}_{2}+7 e^{-}\right) \times 4 \\
\text { Oxygen: }-4 \times 7=28 \quad\left(\mathrm{O}_{2}+4 e^{-} \rightarrow \mathrm{NO}_{2}\right) \times 7
\end{gathered}
$$

Electrons will cancel out

THEREFORE: $4 \mathrm{NH}_{3}+7 \mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Solution

* Step 6: Balance the other elements by inspection.

$4 \mathrm{NH}_{3}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Example

* Balance the following reaction using the oxidation number method.

$$
* \mathrm{~B}_{2} \mathrm{O}_{3}+\mathrm{Mg} \rightarrow \mathrm{MgO}+\mathrm{Mg}_{3} \mathrm{~B}_{2}
$$

Example

* Balance the following reaction using the oxidation number method.

$$
* \mathrm{~B}_{2} \mathrm{O}_{3}+\mathrm{Mg} \rightarrow \mathrm{MgO}+\mathrm{Mg}_{3} \mathrm{~B}_{2}
$$

Solution

* Balance the following reaction using the oxidation number method.

$$
\underset{+3-2}{* \mathrm{~B}_{2} \mathrm{O}_{3}}+\underset{\mathrm{O}}{\mathrm{Mg}} \rightarrow \underset{+2-2}{\mathrm{MgO}}+\underset{+2}{\mathrm{Mg}} \mathrm{Ma}_{-3}
$$

Solution

* Balance the following reaction using the oxidation number method.

$$
\underset{+3-2}{* \mathrm{~B}_{2} \mathrm{O}_{3}}+\underset{\mathrm{O}}{\mathrm{Mg}} \rightarrow \underset{+2-2}{\mathrm{MgO}}+\underset{+2}{\mathrm{Mg}} \mathrm{Ma}_{-3}
$$

RED: $\mathrm{B}_{2} \mathrm{O}_{3}+12 \mathrm{e}-\rightarrow \mathrm{Mg}_{3} \mathrm{~B}_{2}$
$0 \mathrm{X}:(\mathrm{Mg} \rightarrow \mathrm{MgO}+2 e-1 \times 6$

Solution

* Balance the following reaction using the oxidation number method.

$$
\underset{+3-2}{* \mathrm{~B}_{2} \mathrm{O}_{3}}+\underset{\mathrm{O}}{\mathrm{Mg}} \rightarrow \underset{+2-2}{\mathrm{MgO}}+\underset{+2}{\mathrm{Mg}} \mathrm{Ma}_{-3}
$$

RED: $\mathrm{B}_{2} \mathrm{O}_{3}+12 \mathrm{e}^{-} \rightarrow \mathrm{Mg}_{3} \mathrm{~B}_{2}$
OX: $\quad(\mathrm{Mg} \rightarrow \mathrm{MgO}+2 e-) \times 6$

$$
\mathrm{B}_{2} \mathrm{O}_{3}+6 \mathrm{Mg} \rightarrow 3 \mathrm{MgO}+\mathrm{Mg}_{3} \mathrm{~B}_{2}
$$

