Chemical Equations

How to write and balance chemical equations

* In a chemical equation, we have both reactants and products.

* Reactants \rightarrow Products

* Reactants and products are separated by a \rightarrow or yield.

* More than one reactant or more than one product is separated by a *

- * Reactant + Reactant \rightarrow Product + Product
- * Example:

* NaOH + HCI \rightarrow NaCl + H₂O

* states of matter are always written in chemical formulas

***** (s) = solid

* (l) = liquid

* (aq) = aqueous

Law of Conservation of Mass

* The Law of Conservation of Mass: that mass is neither created nor destroyed in any chemical reaction.

Law of Conservation of Mass

* Same number of atoms on each side of the equation.

Steps for Balancing Equations

* 1) Write the skeleton equation:

* $H_{2(g)}$ + $O_{2(g)} \rightarrow H_2O_{(d)}$

Steps for Balancing Equations

* 2) Count the number of atoms on each side

 $\ast H_{2(g)} \ast O_{2(g)} \rightarrow H_2O_{(d)}$

H: 2H: 20: 20: 1

Steps for Balancing Equations

- * 3) Use coefficients to balance the total number of atoms
 - * NOTE: You can change the coefficients, not the subscripts.

* $2H_{2(g)}$ + $0_{2(g)} \rightarrow 2H_20_{(d)}$

* $Na_{(s)}$ + $Cl_{2(g)} \rightarrow NaCl$ * $Mg_{(s)}$ + $O_{2(g)} \rightarrow MgO_{(s)}$

* $2Na_{(s)}$ + $CI_{2(g)} \rightarrow 2NaCI$ * $2Mg_{(s)}$ + $O_{2(g)} \rightarrow 2MgO_{(s)}$

Now try these...

* $ZnS + O_2 \rightarrow ZnO + SO_2$

- * FeS₂ + Cl₂ \rightarrow FeCl₃ + S₂Cl₂
- * FeCl₃ + MgO \rightarrow Fe₂O₃ + MgCl₂
- * BONUS: $C_5H_{11}NH_2 + O_2 \rightarrow CO_2 + H_2O + NO_2$