Chemical Equations

How to write and balance chemical equations

* In a chemical equation, we have both reactants and products.
* Reactants \rightarrow Products
* Reactants and products are separated by a or yield.
* More than one reactant or more than one product is separated by a +
* Reactant + Reactant \rightarrow Product + Product
* Example:
* $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

Example

* states of matter are always written in chemical formulas

$$
\begin{aligned}
& *(s)=\text { solid } \\
& *(g)=\text { gas } \\
& *(()=\text { liquid }
\end{aligned}
$$

$$
\text { * }(\text { aq })=\text { aqueous }
$$

Balancing Equations

Law of Conservation of Mass

* The Law of Conservation of Mass: that mass is neither created nor destroyed in any chemical reaction.

Law of Conservation of Mass

* Because of this principle, equations must be BALANCED.
* Same number of atoms on each side of the equation.

Steps for Balancing Equations

* 1) Write the skeleton equation:
* $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(d}$

Steps for Balancing Equations

* 2) Count the number of atoms on each side
* $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{d}}$

$$
\begin{array}{ll}
H: 2 & H: 2 \\
0: 2 & 0: 1
\end{array}
$$

Steps for Balancing

 Equations* 3) Use coefficients to balance the total number of atoms
* NOTE: You can change the coefficients, not the subscripts.

$$
* 2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(d)}
$$

Try these. . .

* $\mathrm{Na}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{NaCl}$
* $\mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{MgO}_{(\mathrm{s})}$

Try these...

* $2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NaCl}$
* $2 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{MgO}_{(\mathrm{s})}$

Now try these. . .

$* \mathrm{ZnS}+\mathrm{O}_{2} \rightarrow \mathrm{ZnO}+\mathrm{SO}_{2}$

* $\mathrm{FeS}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{FeCl}_{3}+\mathrm{S}_{2} \mathrm{Cl}_{2}$
$* \mathrm{FeCl}_{3}+\mathrm{MgO} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{MgCl}_{2}$
* BONUS: $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NH}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}$

