Candy Balancing Equations Lab

Remember that the law of conservation of mass states that matter cannot be created or destroyed. The means the mass of products must equal the mass of reactions. You will model this using candy to represent atoms.

Directions:

1. Use the candy to model atoms.
2. Set up the reactants using the correct number of candies. Move the same candies to the product side. As they become more difficult you may need to set
up the products first and work backwards.
3. Set up the molecules and fill in the coefficients
4. Draw and color the equations that represent the reactions.

Data Table:

Atom	\mathbf{O}	H	Na	Cl	Ca
Color:					
Number	12	8	4	4	2

When chemicals react, atoms are conserved. This means that there must be the same number of each atom on each side of the arrow.

Look at the reaction $\quad \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$

How many H candies are on the left side \qquad , right side \qquad

How many O candies are on the left side \qquad , right side \qquad
Is the equation currently balanced? Yes/ No

Write the correctly balanced equation:

REACTION 2: Look at the reaction $\quad \mathrm{NaCl}+\mathrm{CaO} \rightarrow \mathrm{Na}_{2} \mathrm{O}+\mathrm{CaCl}_{2}$

Reaction 2: Write the balanced chemical equation

REACTION 3: Look at the reaction $\quad \mathrm{NaOH}+\mathrm{Ca} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Na}$

$\mathrm{NaOH}+\mathrm{Ca} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Na}$

Na

Reaction 3: Write the balanced chemical equation

Analysis:

1. What do the M \& M's stand for in this lab?
2. What is the coefficient and what does it apply to?
3. What are the steps to balancing a chemical equation?
4. How does the Law of Conservation of Matter apply to chemical reactions?

Balance the equation then write the final formula.

1. __ $\mathrm{H}_{2} \mathrm{O}+\ldots \mathrm{SO}_{3} \rightarrow \ldots \mathrm{H}_{2} \mathrm{SO}_{4}$
2. __ $\mathrm{H}_{2}+\ldots \mathrm{Br}_{2} \rightarrow \ldots \mathrm{HBr}$
3. __ $\mathrm{C}+\ldots \mathrm{H}_{2} \rightarrow \ldots \mathrm{CH}_{4}$
4. $\quad _\mathrm{C}+\ldots \mathrm{O}_{2} \rightarrow \ldots+\mathrm{CO}$

$$
\text { 5. __ } \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \ldots \mathrm{H}_{2} \mathrm{O}+\ldots \mathrm{O}_{2}
$$

SNC 2P
J. Kropac

