

Democritus to the Planetary Model

- * Greek philosopher (460 370 BCE)
- * Believed in the philosophy of materialism
- * With Leucippus, they though that matter can not be divided infinitely.
- Proposed the existence of indestructible, indivisible particles called atoms.

* British chemist, physicist, meteorologist

* Proposed the first "modern" atomic theory in 1803

* Palton's atomic model: Billiard Ball Model

5 Points of Dalton's Atomic Theory:

- * All matter is made of tiny indivisible particles called atoms.
- * Atoms cannot be created or destroyed.
- * All atoms of a particular element are identical.
- * Compounds are formed through the combination of elements.
- * Chemical reactions involve atoms recombining to form new substances.

Studied behaviour of strange beams in evacuated glass cathode ray tubes (CRT) in 1897

 When high voltage is applied across a CRT tube, fluorescence is produced from an invisible beam striking a ZnS coating

- * He concluded that cathode rays consist of tiny "particles"
- * These charged particles were much smaller than the tiniest atom and came from within the atoms of the metal electrode

* These "subatomic" particles were called electrons and led to the Plum Pudding Model

Thomson's Plum Pudding Atom

Rutherford and the Nuclear Atom

- * Work by the Curies and Bequerel led to the discovery of strange beams called radiation
- * Lead Block Experiment: Rutherford discovered radiation came in 3 forms: alpha (+), beta (-) and gamma rays
- This radiation came from the spontaneous disintegration of unstable atoms called "radioisotopes" (e.g. radium, uranium)

Gold Foil Experiment (1909)

- * Rutherford proposed that a beam of alpha particles (He²⁺ ions) should have enough energy to pass through a thin gold foil and be detected on a ZnS screed behind the foil
- * The experiment initially seemed work, confirming Thomson's Plum Pudding Model of the atom with a diffuse positive sphere.

Most alpha particles behaved as expected But 1 in 8000 deflected back (anomalies).

Rutherford's Conclusions

- * The positive charge is not distributed evenly but is in a very dense positive core.
- Most of the atom is simply empty space occupied by tiny electrons.

* Rutherford proposed a new model called the Planetary Model due to its resemblance to our solar system.

The Proton (1919)

- * Rutherford's nucleus was extremely tiny - only 1/10,000th the diameter of the entire atom!
- * Later, Rutherford proved that other atoms contain hydrogen nuclei
- He concluded this is the simplest positively charged particle and named it the proton

The Mass Problem

- * Protons seemed to account for most of the mass of the atom
- But evidence showed that atoms had only half the positive charge that was expected if the nucleus was composed only of protons
- * The answer to the problem came from another radioactive beam....

James Chadwick

* In 1932, Chadwick experimented with a new type of radiation emitted from beryllium

* The particle had no charge but almost the same mass as the proton; he called these particles neutrons

The Structure of the Atom

Particle	Symbol	Location	Charge	Mass (amu)
proton	р	nucleus	+ 1	1.007276
neutron	n	nucleus	0	1.008664
electron	e-	outside nucleus	- 1	0.0005486

Democritus	Indestructible particles called atoms		
Dalton	Billiard Ball Model		
Thompson	Plum Pudding Model		
Rutherford	Planetary Model, introduced proton		
Chadwick	Neutrons		

Bohr to Schrodinger

Problems with Rutherford

* Two pieces of evidence could not be explained:

* The Stability of the Atom: A charged electron orbiting a charged nucleus should lose energy as it orbits.

* The Line Spectra of Elements: All elements create a unique signature colour when excited.

Each element has a unique series of lines

Bohr understood that the 4 visible (and other invisible) emission lines of hydrogen corresponded to specific jumps in energy levels.

* Electrons could only exist at specific orbits or "energy levels" around the nucleus.

Bohr's Shell Model

- * 1. Electrons can only occupy certain discrete orbits or energy levels.
- * 2. Electrons can exist in an energy level without losing energy.
- * 3. Electrons absorb or release energy only when they change their energy levels.

The Bohr Model and Electron Arrangement

* When an inner orbit is filled, electrons occupy orbits further from the nucleus

* Bohr's shell model finally explained the structure of the Periodic Table, which had been published in 1869!

Modern Atomic Theory: Schrodinger

- * Used Schrodinger wave equation to describe atoms in terms of energy.
- * Showed electrons don't orbit in fixed orbits but rather in clouds.
- * Electron "cloud" around nucleus.
- * Exact location of electron is not known.

* Theory is known as 'Electron Cloud Model.'

