

* Hydrocarbons contain only two elements, carbon and hydrogen.

- Make up the vast majority of all organic chemicals.
- * Many are used as fuels or raw materials.

 Identify the number of carbons. Use the appropriate IUPAC prefix with the ending 	 1)Draw the number of identified by the IUPAC prefix. Attach them each by a bond. 2) each carbon using a
Examples	Examples
Name: CH ₃ - CH ₂ - CH ₃	Draw: pentane
CH3 - CH2 - CH2 - CH2 - CH2 - CH3	octane

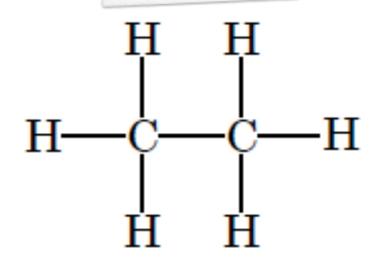
carbon-carbon bond. Alkanes are _____ and contained no double or triple bonds.

Alkanes always end with '____

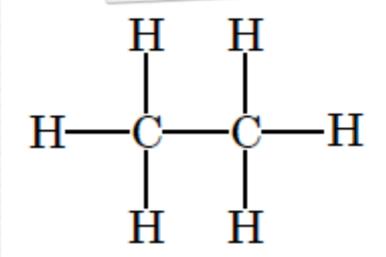
* Cut Here

1)Identify the number of carbons.

2) Use the appropriate IUPAC prefix with the ending _____.


1)Draw the number	of
identified by the IUPAC prefix. Attach	
them each by a $_$	bond.
0)	aach aarban uaing
2)	each carbon using
a	_

Examples	Examples
Name: CH ₃ - CH ₂ -	Draw: pentane octane
Alkanes are characterized by a Alkanes are and Alkanes always end with ''	


Straight Chain Alkanes

- * Alkanes are characterized by a single carbon-carbon bond.
- * Alkanes are saturated and contained no double or triple bonds.

Straight Chain Alkanes

 1)Identify the number of carbons. 2) Use the appropriate IUPAC prefix with the ending 	 1)Draw the number of
Examples	Examples
Name: CH3 - CH2 - CH3	Draw: pentane
CH3 - CH2 - CH2 - CH2 - CH2 - CH3	octane
 Alkanes are characterized by a carbon-carbon bond. Alkanes are and contained no double or triple bonds. Alkanes always end with '' 	

* Identify the number of carbons.

* Use the appropriate IUPAC prefix with the ending ANE.

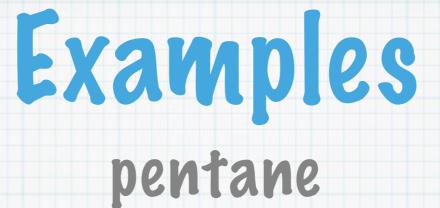
* $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$



nonane

hexane

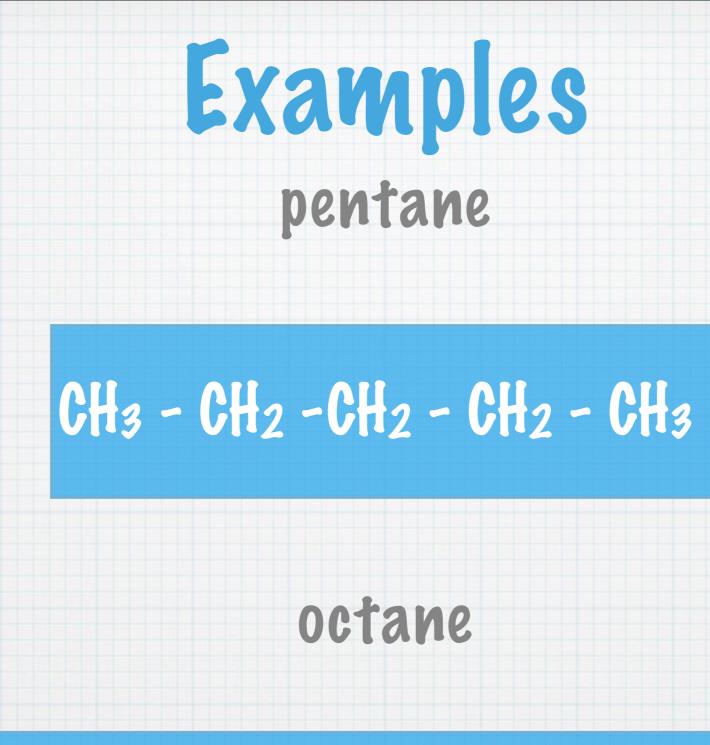
 1)Identify the number of carbons. 2) Use the appropriate IUPAC prefix with the ending 	 identified by the IUPAC prefix. Attach them each by a bond. 2) each carbon using a
XAMPLES	Examples
ame: H₃ - CH₂ - CH₃	Draw: pentane
CH3 - CH2 - CH2 - CH2 - CH2 - CH3	octane
Alkanes are characterized by a Alkanes are and Alkanes always end with ''	carbon-carbon bond.


Blanks

Here

Praw the number of carbons identified by the IUPAC prefix. Attach them each by a single bond.

* Saturate each carbon using a hydrogen.


Examples

pentane

H H H H H I I I I I H-C-C-C-C-C-H I I I I I H H H H H

octane

H H H H H H H H I I I I I I I I I H-C-C-C-C-C-C-C-C-H I I I I I I I I H H H H H H H H

$$CH_3 - CH_2 - CH_3$$

 Identify the longest continuous chain. Use ANE ending. Name the side chains according to number of carbons with an YL ending. Place them in alphabetical order. Use di(2), tri(3), tetra(4) to identify more then one of the same type of side chain. Number side chains using the lowest numbering system. 	 Start by drawing the base chain using the prefix in front of 'ane' Add any side chains based on the location indicated by the number proceeding it. For each side chain, draw the number of carbons identified in by the prefix in front of the YL ending. Saturate each carbon with the appropriate number of hydrogens.
Examples	Examples
Name: CH_3 I $CH_3 - CH - CH - CH_3$ I $CH_2 - CH_3$ I $CH_2 - CH_3$ I $CH_2 - CH_2 - CH_2 - CH_2 - CH_3$ I $CH_2 - CH_2 - CH_2 - CH_3$	Draw: 2-methylhexane 3, 4 - dimethylheptane
These are alkanes that contain brand : Compounds but a different	with the same molecular

* Fill in the Blanks Here

Branched Alkanes

* Structural Isomers: Compounds with the same molecular formula but a different structural formula.

2 3 4 5	 Identify the longest continuous chain. Use ANE ending. Name the side chains according to number of carbons with an YL ending. Place them in alphabetical order. Use di(2), tri(3), tetra(4) to identify more then one of the same type of side chain. Number side chains using the lowest numbering system. 	 Start by drawing the base chain using the prefix in front of 'ane' Add any side chains based on the location indicated by the number proceeding it. For each side chain, draw the number of carbons identified in by the prefix in front of the YL ending. Saturate each carbon with the appropriate number of hydrogens.
	XAMPLES	Examples
Na	me: CH ₃ I CH ₃ - CH - CH - CH ₃ I CH ₂ - CH ₃ CH ₂ - CH ₃ I CH ₂ - CH ₃ I CH ₂ - CH ₂ - CH ₂ - CH ₂ - CH ₃	Draw: 2-methylhexane 3, 4 - dimethylheptane
	These are alkanes that contain brand Compounds	ches or with the same molecular
	but a different formula	

Naming Branched Alkanes

- * 1) Identify the longest continuous chain.
- * 2) Use ANE ending.
- * 3) Name the side chains according to number of carbons with an YL ending. Place them in alphabetical order.
- * 4) Use di(2), tri(3), tetra(4) to identify more then one of the same type of side chain.
- * 5) Number side chains using the lowest numbering system.

CH3 - CH - CH - CH3

CH3

$CH_2 - CH_3$

$CH_3 - CH - CH_2 - CH - CH_2 - CH_2 - CH_3$

$$CH_2 - CH_3$$

110

$$CH_3 - CH - CH - CH_3$$

CH3

CH2-CH3 5-ethyl-3-methyloctane

$CH_3 - CH - CH_2 - CH - CH_2 - CH_2 - CH_3$

$$CH_2 - CH_3$$

 Identify the longest continuous chain. Use ANE ending. Name the side chains according to number of carbons with an YL ending. Place them in alphabetical order. Use di(2), tri(3), tetra(4) to identify more then one of the same type of side chain. Number side chains using the lowest numbering system. 	 Start by drawing the base chain using the prefix in front of 'ane' Add any side chains based on the location indicated by the number proceeding it. For each side chain, draw the number of carbons identified in by the prefix in front of the YL ending. Saturate each carbon with the appropriate number of hydrogens.
EXAMPLES Name:	Examples
CH₃	Draw:
I CH ₃ - CH - CH ₃ I CH ₃	2-methylhexane
	3, 4 - dimethylheptane
CH2 - CH3 I CH3 - CH - CH2 - CH2 - CH2 - CH3 I CH2 - CH3	
• These are alkanes that contain brance •: Compounds but a different	with the same molecular

* Fill in the Blanks Here

Prawing Branched Alkanes

- * 1) Start by drawing the base chain using the prefix in front of ane'
- * 2) Add any side chains based on the location indicated by the number proceeding it.
- * 3) For each side chain, draw the number of carbons identified in by the prefix in front of the YL ending.
- * 4) Saturate each carbon with the appropriate number of hydrogens.

2-methylhexane

3,4 - dimethylheptane

CH3 I CH3 - CH - CH2 - CH2 - CH2 - CH3

3,4 - dimethylheptane

CH3 CH3 I I CH3 - CH2 - CH - CH - CH2 - CH2 - CH3