Acids an Bases Part 2

Bronstead's and Lowry's Definition of Acids and Bases

Acids are substances whioh donate protons. Bases are substances which accept protons.

Example

$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}$

Example

$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$ BASE ACID

Accepted
Donated proton
proton

Conjugate Acids and

 Bases* Conjugate Acid - Base Pairs - When using the Bronsted concept for acids and bases, consider all acid - base reactions as reversible equilibria.

Example

$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$ BASE ACID

Example

$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$ BASE ACID CONJUGATE CONJUGATE ACID BASE

Example

$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$ BASE ACID CONJUGATE CONJUGATE ACID BASE

A base is always paired with a conjugate acid. An acid is always paired with a conjugate base.

Example

$$
3 \rightarrow \text { ? }
$$

Example

HF
 ACID
 .
 $\mathrm{H}_{2} \mathrm{O}$
 $\rightarrow \mathrm{F}^{-}$
 5
 $\mathrm{H}_{3} \mathrm{O}^{+}$
 BASE
 CONJUGATE CONJUGATE BASE ACID

Challenge Questions

* $\mathrm{AlOHH}_{3}+3 \mathrm{HCl} \rightarrow \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
$* 2 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ba}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
$* 2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

Example

$$
\underset{\text { BASE }}{\mathrm{AlOH}_{3}}+\underset{\text { ACIO }}{3 \mathrm{HCl}} \rightarrow \underset{\mathrm{CB}}{\mathrm{AlCl}_{3}}+3 \mathrm{H}_{\mathrm{CA}}^{\mathrm{HO}}
$$

* $2 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ba}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$ ACID BASE
 CA
 CB

$* 2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ BASE
 ACID
 CB
 CA

pH Scale

pH Scale

* pH of a solution is a measure of its hydronium ion concentration.
* "p" stands for potential and "H" stands for hydrogen; hence, the potential of a substance to attract hydrogen ions

pH Scale

* The pH scale is a number scale from 0 to 14 to describe the concentration of hydronium ions in a solution.
* A pH of 7 indicates a neutral solution.
* Acids have a pH less than 7.
* Bases have a pH greater than 7.
* If you add an acid to water, the concentration of $\mathrm{H} 30+$ increases and the concentration of OH -decreases.
* The lower the pH value, the greater the $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration in solution is.
* If you add a base to water, the concentration of OH- increases and the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$decreases.
* The higher the pH value, the lower the $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration is.

- Each pH unit is 10 times as large as the previous one
- A change of 2 pH units means 100 times more basic or acidic

Calculating pH

$$
\begin{aligned}
*\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] & =10-\mathrm{pH} \\
* \mathrm{pH} & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
*[\mathrm{OH}-] & =10-\mathrm{oHH} \\
* \mathrm{pOH} & =-\log [\mathrm{OH}-]
\end{aligned}
$$

Type of Indicator	Colour in Acid	Colour in Base
Phenol Red	Yellow	Red
Bromothymol Blue	Yellow	Blue
Blue Litmus Paper	Red	Stays Blue
Red Litmus Paper	Stays Red	Blue
Phenolphthalein	Colourless	Red

