Acids and Bases

Properties of Acids

* Sour tasting

* Corrosive

* Water Soluble

* Good Conductor of Electricity

* Contain H⁺ atoms

* When mixed in with water release H⁺ atoms

* When mixed in with water release H* atoms

* When combined with metals, acids produce hydrogen gas

* Example: Zn + HCl \rightarrow ZnCl + H₂

* When combined with carbonates, they produce carbon dioxide gas

* Example: HCl + CaCO₃ \rightarrow CO₂ + H₂O + CaCl

Properties of Bases

- * Bitter tasting
- * Corrosive
- * Water Soluble
- * Good Conductors of Electricity
- * Contain OH- atoms

* When in water release OH-

* NaOH in $H_2O \rightarrow Na^+ + OH^-$

* Bases react with protein (like those in your skin and eyes)

* What do you think can do more damage to a Coke can, and acid or a base?

ls it an acid or a base?

* Usually acid starts with H

* Examples

* HCI : hydrochloric acid

* HF: hyydroflouric acid

* H₃PO₄: phosphoric acid

* Sometimes bases will have OH.

* NaOH: Sodium hydroxide

* KOH: Potassium Hydroxide

* NH40H: Ammonium hydroxide

* Bicarbonates form OH in water

* NaHCO3: sodium bicarbonate

Acids and Bases

pH, Indicators, and Neutralization

* pH scale: a scale that represents the concentration of H+ ions

* pH refers to 'power of hydrogen ion'

* The pH scale ranges from 0-14

* A factor that affects a rate of reaction

* The more concentrated the acid, the more corrosive

* Neutralization: an acid and base react to form a salt and a water.

* A special case of double displacement

* HCI + NaOH -> H2O + NaCl

* H2SO4 + KOH -> H2O + K2SO4

* A special case of double displacement * HCl + NaOH -> H₂O + NaCl

* The H⁺ ion from acid and OH⁻ ion from base combine to form H₂O

* H* + OH- -> H2O

* Example:

* A fire extinguisher's reaction is as follows

* H2SO4 + NaHCO3 -> Na2SO4 + CO2 + H2O

* The carbon dioxide bubbles smother the flame

* Teacher Demo: What happens when you have a particularly acidic lunch?

- * Teacher Demo: What happens when you have a particularly acidic lunch?
 - * Acid + Alka seltzer -> CO2 + salt + water
 - ***** HCl + NaHCO₃ -> CO₂ + NaCl + H₂O
 - * Compare to milk of magnesia
 - * $Mg(OH)_2$ + $HCI \rightarrow MgCI + H_2O$

* a factor that affects a rate of reaction * the more concentrated the acid, the more corrosive

Concentration

- * a factor that affects a rate of reaction
- * the more concentrated the acid, the more corrosive
 - * BUT we have HCl in our stomach, why does it not burn?

DON'T WRITE THIS PART, JUST LISTEN :)

* Acid is less concentrated, and our stomach lining protects from an acidic environment

* The strength of an acid depends on the amount of H⁺ ions found in the solution

- * Concentration of H⁺ ions = [H⁺]
- * The units of concentration are mol/L or M

Indicators

Indicators: chemicals that change colour as the concentration of hydrogen ion [H+] and hydroxide ion [OH-] changes. They are typically one colour in and acid and a different colour in a base.

Indicators

- * Eg. Phenophthalein, litmus blue, litmus red, bromothymol blue, universal indicator, pH paper.
- Indicators simply tell whether a substance is acidic or basic but not how acidic or basic (except for universal indicator)

* Balance each skeleton equation. Identify the acid or base by underlining.

* $Mg(OH)_{2(aq)} \rightarrow Mg^{2+}(aq) + OH^{-}(aq) * Be(OH)_{2(aq)} \rightarrow Be^{2+}(aq) + OH^{-}$

* $H_2SO_4(aq) \rightarrow H^+(aq) + SO_4^{2-}(aq)$

* $HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$

* $NaOH_{(aq)} \rightarrow Na^{+}_{(aq)} \rightarrow OH^{-}_{(aq)}$

* $Ca(OH)_{2(aq)} \rightarrow Ca^{2+}(aq) + OH^{-}(aq)$

* $HI_{(aq)} \rightarrow H^{+}_{(aq)} + I^{-}_{(aq)}$

(aq)

* $LiOH_{(aq)} -> Li^+_{(aq)} + OH^-_{(aq)}$

* $HF(aq) -> H^{+}(aq) + F^{-}(aq)$