Acid Base Titrations

J. KROPAC

Reactions Involving Acids

* Active metals react with acids in a single displacement reaction
* active metal + acid \rightarrow hydrogen + ionic compound
$* \mathrm{Mg}_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{H}_{2(g)}+\mathrm{MgCl}_{2(a q)}$

Reactions Involving Acids

* All acids react with carbonates in a double displacement reaction
* carbonate + acid \rightarrow carbon dioxide + water + ionic compound
$* \mathrm{Na}_{2} \mathrm{CO}_{3(s)}+2 \mathrm{HNO}_{3(a q)} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(1)}+$ $2 \mathrm{NaNO}_{3(a q)}$

Reactions Involving Acids

* Acids undergo precipitation reactions with some ionic compounds
* ionic compound + acid \rightarrow precipitate + acid
$* \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)}+2 \mathrm{Hl}_{(\mathrm{aq})} \rightarrow \mathrm{Pbl}_{2(\mathrm{~s})}$ + $2 \mathrm{HNO}_{3(a q)}$

Reactions Involving Acids

* Acids react with bases in another double displacement reaction often called a neutralization reaction
* base + acid \rightarrow ionic compound (salt) + water
$* \mathrm{NaOH}_{(\text {aq })}+\mathrm{HCl}_{(\text {(aq) })} \rightarrow \mathrm{NaCl}_{(\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(1)}$

Reactions Involving Acids

* During a neutralization reaction Ht^{+}ions from an Arrhenius acid and OH- ions from an Arrhenius base combine to form water.
* The metal cation from the base and and the ion from the acid combine to form a salt.

Titration

* A laboratory procedure involving the carefully measured and controlled adding of a solution from a buret into a measured volume of a sample solution
* It is used to determine the concentration of substances in solution

Titrant

* the solution in the buret during a titration Istandard solution with KNOWN concentration)

In the buret \rightarrow standard solution (KNOWN concentration)

In the flask \rightarrow precise volume (UNKNOWN concentration)

In the flask \rightarrow indioator to detect the end point

Equivalence Point

* the point at which the amount of titrant is just enough to react with all the reactant in the sample.

The Endpoint

* the point in a titration at which the indicator changes colour
* this is at, or close to, the point at which the titrant and sample in the flask have completely reacted

Titration of an Acid with a Base using phenolphthalein indicator

Figure 1

Startpoint Slow Down

Figure 2

Figure 3

Endpoint

Figure 4

Too Far

Steps in Titration

* Place standard solution in buret
* Place a precise volume of a solution of unknown concentration in a flask
* Add an indicator to the flask
* Record the volume in the buret as your initial reading
* Open the stopcock of the buret and allow the standard solution to enter the flask, while swirling the flask
* Slow down the flow of standard solution being added to ensure you don't surpass the endpoint by too much
* Once the end point is reached, record the final volume in the buret
* Subtract the initial volume from the final volume in the buret to obtain the total volume of standard solution used to neutralize the unknown solution.

Determining

Concentration Using

* A $0.1250 \mathrm{~mol} / \mathrm{L}$ solution of hydrochloric acid, HCl (aq), was used to neutralize a 25.00 mL sample of the potassium hydroxide solution. The average volume of hydrochloric acid required was 32.86 mL . Determine the concentration of the potassium hydroxide solution, $\mathrm{KOH}(a q)$.

Step 1: Write Balanced Equation
$* \mathrm{KOH}_{(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{KCl}_{(\mathrm{aq})}$

Step 2: List Given Values

* $V_{\text {KOH }}=25.00 \mathrm{~mL}$
* $V_{\text {HCI }}=32.86 \mathrm{~mL}$
* Cнеі $=0.1250 \mathrm{~mol} / \mathrm{L}$
* Ckон ?

Step 3: Calculate Number

 of Moles of Titrant * $V_{\text {tcl }}=32.86 \mathrm{~mL}$ * Chel $=0.1250 \mathrm{~mol} / \mathrm{L}$$$
\begin{aligned}
& n=c \times V \\
& n=\frac{0.123 \mathrm{~mol} \times 0.0386 \mathrm{~L}}{\mathrm{~L}}
\end{aligned}
$$

$n=0.004748 \mathrm{~mol}$

Step 4: Molar Ratio

* How much potassium hydroxide is required needed to neutralize the hydrochloric acid?

$$
\begin{gathered}
\left.* \mathrm{KOH}_{(\mathrm{aq})}+\mathrm{HCl}_{(\text {aq })} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{KCl}_{(\text {(aq) }}\right) \\
1= \\
1=\underset{\text { nkOH }}{0.004748 \text { mols }} \\
\text { nKOH }=0.004748 \mathrm{mols}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Step 4: Determine } \\
& \text { Unknown } \\
& \begin{array}{l}
\text { * } V_{K O H}=25.00 \mathrm{~mL} \\
\text { * } \begin{array}{l}
\text { KOH } \\
C= \\
n \\
V
\end{array} \\
n=0.004748 \mathrm{~mol} \\
0.004748 \mathrm{~mol} \\
n=0.1643 \mathrm{~mol} / \mathrm{L} \quad \begin{array}{l}
\text { Therefore the }
\end{array} \\
\text { concentration of KOH }
\end{array}
\end{aligned}
$$

Homework

* p 466 1, 2,3,4

