Acid Base Titrations

J. KROPAC

- * Active metals react with acids in a single displacement reaction
- * active metal + acid hydrogen + ionic compound
- * Mg(s) + $2HCl(aq) \rightarrow H_{2(g)} + MgCl_{2(aq)}$

- * All acids react with carbonates in a double displacement reaction
- * carbonate + acid → carbon dioxide + water + ionic compound
- * Na₂CO_{3(s)} + 2HNO_{3(aq)} \rightarrow CO_{2(g)} + H₂O_(l) + 2NaNO_{3(aq)}

- * Acids undergo precipitation reactions with some ionic compounds
- * ionic compound + acid → precipitate
 + acid
- * Pb(NO₃)_{2(aq)} + 2HI_(aq) \rightarrow PbI_{2(s)} + 2HNO_{3(aq)}

- * Acids react with bases in another double displacement reaction often called a neutralization reaction
- * base + acid → ionic compound (salt)
 + water
- * NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H2O(1)

- * Puring a neutralization reaction H⁺ ions from an Arrhenius acid and OH⁻ ions from an Arrhenius base combine to form water.
- * The metal cation from the base and and the ion from the acid combine to form a salt.

Titration

- * A laboratory procedure involving the carefully measured and controlled adding of a solution from a buret into a measured volume of a sample solution
- * It is used to determine the concentration of substances in solution

Titrant

* the solution in the buret during a titration (standard solution with KNOWN concentration)

In the buret → standard solution (KNOWN concentration)

In the flask \rightarrow precise volume (UNKNOWN concentration)

In the flask \rightarrow indicator to detect the end point

Equivalence Point

* the point at which the amount of titrant is just enough to react with all the reactant in the sample.

The Endpoint

- * the point in a titration at which the indicator changes colour
- * this is at, or close to, the point at which the titrant and sample in the flask have completely reacted

Titration of an Acid with a Base using phenolphthalein indicator

Steps in Titration

- * Place standard solution in buret
- * Place a precise volume of a solution of unknown concentration in a flask
- * Add an indicator to the flask
- * Record the volume in the buret as your initial reading
- * Open the stopcock of the buret and allow the standard solution to enter the flask, while swirling the flask
- * Slow down the flow of standard solution being added to ensure you don't surpass the endpoint by too much
- * Once the end point is reached, record the final volume in the buret
- * Subtract the initial volume from the final volume in the buret to obtain the total volume of standard solution used to neutralize the unknown solution.

Concentration Using

* A 0.1250 mol/L solution of hydrochloric acid, $HCl_{(aq)}$, was used to neutralize a 25.00 mL sample of the potassium hydroxide solution. The average volume of hydrochloric acid required was 32.86 mL. Petermine the concentration of the potassium hydroxide solution, $KOH_{(aq)}$.

Step 1: Write Balanced Equation

* KOH (aq) + HCl(aq) \rightarrow H2O(1)+ KCl(aq)

Step 2: List Given Values

- * VKOH = 25.00 mL
- * VHCI=32.86 mL
- * CHCI = 0.1250 mol/L
- * CKOH= ?

Step 3: Calculate Number of Moles of Titrant

* VHCI=32.86 mL

* CHCI = 0.1250 mol/L

n=cxV

n= 0.123 mol x 0.0386 L

n= 0.004748 mol

Therefore there are 0.004748 mols of HCI

Step 4: Molar Ratio

* How much potassium hydroxide is required needed to neutralize the hydrochloric acid?

* KOH (aq) + HCl(aq) \rightarrow H2O(1)+ KCl(aq)

$$1 = 0.004748 \text{ mols}$$
 $1 = 0.004748 \text{ mols}$

 $n_{KOH} = 0.004748 \text{ mols}$

Step 4: Petermine Unknown

* VKOH= 25.00 mL

* $n_{KOH} = 0.004748 mol$

C= N

n= 0.004748 mol 0.02500 L

n= 0.1643 mol/L

Therefore the concentration of KOH is 0.1643 mol/L.

Homework

* p 466 1, 2, 3, 4