Mirror Equations

\bullet

The Mirror Equation of Magnification

5

* $f=$ focal length
* Positive in a concave mirror, Negative in a convex mirror
* $d^{0}=$ distance of object
* Always positive (always in front of mirror)
* $d^{i}=$ distance of image
* Positive if the image is real
* Negative if the image is virtual
* Determine the image distance for a 10.0 cm tall object placed 60 cm from a concave mirror having a focal length of 20.0 cm .
* A convex mirror has a focal length of -12.3 cm . An object is placed 56.8 cm from the mirror's surface. Determine the image distance.

Calculating Magnification

Magnification

* Magnification: The measure of how much larger or smaller an image is compared to an object.
* Expressed as a ratio and has no units.
* Two measurements within the equation has to be the same units.

Magnification

Magnification = image height object height

$$
M=\frac{h^{i}}{h^{0}}
$$

Magnification

Magnification = -image distance object distance

$$
M=-\frac{-d^{i}}{d^{0}}
$$

Magnification

* If magnification is greater than 1 , the image is larger than the object
* If magnification is smaller than 1 , the image is smaller than the object.
* A negative magnification means the image is inverted and real.
* A positive magnification means the image is upright and virtual
* Determine the height of the image for a 10.0 cm tall object placed 60 cm from a concave mirror having a focal length of 20.0 cm .

